2021 東京医科歯科大1

- (1) 水平面にて等速円運動をしている. その半径は $\sqrt{l^2-h^2}$ であるから、加速度の大きさは、 $\frac{v^2}{\sqrt{l^2-h^2}}$
- (2) 糸の鉛直線からのなす角を θ とすると, $\sin\theta=\frac{\sqrt{l^2-h^2}}{l}$, $\cos\theta=\frac{h}{l}$ である.円運動の中心方向を正として,運動方程式の水平成分は*1

$$m \frac{v^2}{\sqrt{l^2 - h^2}} = F_1 \sin \theta = \frac{\sqrt{l^2 - h^2}}{l} F_1 \dots (*)$$

また、鉛直上向きを正として、運動方程式の鉛直成分は

$$\underline{\underline{m \cdot 0}} = F_1 \cos \theta + F_2 - mg = \frac{\underline{h}}{\underline{l}} F_1 + F_2 - mg \qquad \dots \qquad (2*)$$

(3) (*) & b,

$$F_1 = \frac{mlv^2}{l^2 - h^2} \qquad \dots \qquad (3*)$$

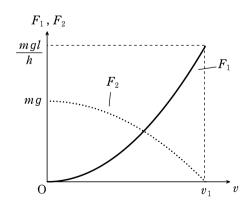
これと, (2*) より

$$F_2 = mg - \frac{mhv^2}{l^2 - h^2} \dots$$
 (4*)

(4) (4*) k

$$v_1 = \sqrt{\frac{g(l^2 - h^2)}{h}}$$

(5) 縦軸を F_1 または F_2 ,横軸を v としてグラフをかく. (3*) 式より, F_1 は原点を頂点とした下に 凸の 2 次関数のグラフ. F_2 は,頂点を (0,mg) とした上の凸の 2 次関数のグラフである.また, $v=v_1$ のとき, $F_1=\frac{mgl}{h}(>mg)$ であることも考慮すると,下図になる.



 $^{^{*1}}$ F_1 , F_2 はそれぞれ大きさと考えた. (ここは気にしすぎるとキリがないかもしれない.)

(6) 動摩擦力の大きさ |F| は, $|F|=\mu F_2=\mu\left(mg-\frac{mhv^2}{l^2-h^2}\right)$ であるから,仕事率の絶対値 |p| は

$$|p| = \mu F_2 v = -\frac{\mu mh}{l^2 - h^2} v^3 + \mu mgv$$

ここで, $p(v) = -\frac{\mu mh}{l^2 - h^2} v^3 + \mu mgv$ として, $0 \le v$ の範囲で最大値を求める.

$$p'(v) = -\frac{3\mu mh}{l^2 - h^2}v^2 + \mu mg$$

であり、 $v \ge 0$ の範囲で p'=0 を満たす v は、 $v=\sqrt{\frac{(l^2-h^2)g}{2h}}$. 増減表をかくと下表.

v	0		$\sqrt{\frac{(l^2-h^2)g}{3h}}$	
p'(v)		+	0	
p(v)		1		N

したがって、
$$v=\sqrt{\frac{(l^2-h^2)g}{3h}}$$
 で $|p|$ を最大にする.

(7) 水平面から高さ
$$\frac{h}{2}$$
 を保ったま等速円運動しているときの,糸の鉛直線からのなす角を θ' とする と, $\sin\theta'=\sqrt{\frac{l^2-\frac{h^2}{4}}{l}}$, $\cos\theta'=\frac{2l}{h}$, $\tan\theta'=\frac{\sqrt{l^2-\frac{h^2}{4}}}{\frac{h}{2}}$ である.運動方程式の水平面成分と

鉛直成分はそれぞれ次のようになる.

$$m - \frac{v_3^2}{\sqrt{l^2 - \frac{h^2}{4}}} = F_2 \sin \theta' \ m \cdot 0 = F_2 \cos \theta' - mg$$

以上2式から F_2 を消去して、 v_3 を求めると

$$v_3 = \sqrt{g \tan \theta' \sqrt{l^2 - \frac{h^2}{4}}}$$

$$= \sqrt{g \cdot \frac{\sqrt{l^2 - \frac{h^2}{4}}}{\frac{h}{2}} \cdot \sqrt{l^2 - \frac{h^2}{4}}}$$

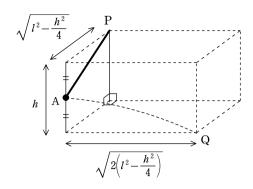
$$= \sqrt{\frac{2g}{h} \left(l^2 - \frac{h^2}{4}\right)}$$

(8) 糸が鉛直方向には,初速度 0,鉛直下向きに加速度 g で,水平方向には初速度 v_3 ,加速度 0 の放 物運動をする.鉛直方向に $\frac{h}{2}$ 移動するのにかかる時間 t_0 は,等加速度運動の式より

$$\frac{h}{2} = \frac{1}{2}gt_0^2$$

$$t_0 = \sqrt{\frac{h}{g}}$$

(9) 糸が切れた位置を A とすると、P、Q、A の位置関係は図のようになる.



したがって、PQ 間の距離は

$$PQ = \sqrt{l^2 - \frac{h^2}{4} + h^2 + 2\left(l^2 - \frac{h^2}{4}\right)} = \underline{\sqrt{3l^2 + \frac{h^2}{4}}}$$