前回の内容はこちらです.
実際の入試問題ではあまりないですが,使用しない文字も問題文に書かれているので,注意をして立式しましょう.
今回も「総巻き数」なのか「単位長さあたりの巻き数」なのかに注意しましょう.
総巻き数を$N$,長さを$l$,単位長さあたりの巻き数を$n$とすると
$n=\dfrac{N}{l}$
の関係があります.
ファラデーの法則の
$V=N|\dfrac{\varDelta \varPhi}{\varDelta t}|$
の$N$は総巻き数で,ソレノイドコイルに電流$i$を流したときに内部に生じる磁場$H$の
$H=ni$
の$n$は単位長さあたりの巻き数です.
この2つの違いに注意して問題を解きましょう.
また,相互インダクタンスを求める際はいずれもコイルAに電流を流したときのことを考えましょう.
<解答>
(1)
コイルAに電流$i_{\rm A}$を流すとコイルA内の磁場$H_{\rm A}$は
$H_{\rm A}=\dfrac{N_{\rm A}}{l_{\rm A}}i_{\rm A}$
したがって,磁束密度$B_{\rm A}$は
$\eqalign{B_{\rm A}&=\mu H_{\rm A}\\ &=\mu \cdot \dfrac{N_{\rm A}}{l_{\rm A}}i_{\rm A}}$
さらに,コイルBを貫く磁束$\varPhi_{\rm B}$は
$\eqalign{\varPhi_{\rm B}&=B_{\rm A}\cdot S_{\rm B}\\ &= \mu \cdot \dfrac{N_{\rm A}S_{\rm B}}{l_{\rm A}}i_{\rm A} }$
したがって,$\dfrac{\varDelta i_{\rm A}}{\varDelta t}>0$のとき,コイル2に生じる誘導起電力の大きさ$V$は
$\eqalign{V&=N_{\rm B}\dfrac{\varDelta \varPhi_{B}}{\varDelta t}\\&=N_{\rm B}\cdot \dfrac{\varDelta }{\varDelta t}\left(\mu \cdot \dfrac{N_{\rm A}S_{\rm B}}{l_{\rm A}}i_{\rm A}\right) \\&=\mu \dfrac{N_{\rm A}N_{\rm B}S_{\rm B}}{l_{\rm A}}\dfrac{\varDelta i_{\rm A}}{\varDelta t}}$
したがって,相互インダクタンスは
$M= \mu \dfrac{N_{\rm A}N_{\rm B}S_{\rm B}}{l_{\rm A}} $ (答)
(2)
コイルAに電流$i_{\rm A}$を流すとコイルA内の磁場$H_{\rm A}$は
$H_{\rm A}=\dfrac{N_{\rm A}}{l_{\rm A}}i_{\rm A}$
したがって,磁束密度$B_{\rm A}$は
$\eqalign{B_{\rm A}&=\mu H_{\rm A}\\ &=\mu \cdot \dfrac{N_{\rm A}}{l_{\rm A}}i_{\rm A}}$
さらに,コイルBを貫く磁束$\varPhi_{\rm B}$は
$\eqalign{\varPhi_{\rm B}&=B_{\rm A}\cdot S_{\rm B}\\ &= \mu \cdot \dfrac{N_{\rm A}S_{\rm B}}{l_{\rm A}}i_{\rm A} }$
コイルの総巻き数は$n_{\rm B}l_{\rm B}$である.したがって,$\dfrac{\varDelta i_{\rm A}}{\varDelta t}>0$のとき,コイル2に生じる誘導起電力の大きさ$V$は
$\eqalign{V&= n_{\rm B}l_{\rm B} \dfrac{\varDelta \varPhi_{B}}{\varDelta t}\\&= n_{\rm B}l_{\rm B} \cdot \dfrac{\varDelta }{\varDelta t}\left(\mu \cdot \dfrac{N_{\rm A}S_{\rm B}}{l_{\rm A}}i_{\rm A}\right) \\&=\mu \dfrac{N_{\rm A} n_{\rm B}l_{\rm B} S_{\rm B}}{l_{\rm A}}\dfrac{\varDelta i_{\rm A}}{\varDelta t}}$
したがって,相互インダクタンスは
$M= \mu \dfrac{N_{\rm A} n_{\rm B}l_{\rm B} S_{\rm B}}{l_{\rm A}} $ (答)
(3)
コイルAに電流$i_{\rm A}$を流すとコイルA内の磁場$H_{\rm A}$は
$H_{\rm A}=n_{\rm A}i_{\rm A}$
したがって,磁束密度$B_{\rm A}$は
$\eqalign{B_{\rm A}&=\mu H_{\rm A}\\ &=\mu \cdot n_{\rm A}i_{\rm A}}$
さらに,コイルBを貫く磁束$\varPhi_{\rm B}$は
$\eqalign{\varPhi_{\rm B}&=B_{\rm A}\cdot S_{\rm B}\\ &= \mu \cdot n_{\rm A}S_{\rm B}i_{\rm A} }$
コイルの総巻き数は$n_{\rm B}l_{\rm B}$である.したがって,$\dfrac{\varDelta i_{\rm A}}{\varDelta t}>0$のとき,コイル2に生じる誘導起電力の大きさ$V$は
$\eqalign{V&= n_{\rm B}l_{\rm B} \dfrac{\varDelta \varPhi_{B}}{\varDelta t}\\&= n_{\rm B}l_{\rm B} \cdot \dfrac{\varDelta }{\varDelta t}\left(\mu \cdot n_{\rm A}S_{\rm B}i_{\rm A}\right) \\&=\mu n_{\rm A} n_{\rm B}l_{\rm B}S_{\rm B}\dfrac{\varDelta i_{\rm A}}{\varDelta t}}$
したがって,相互インダクタンスは
$M= \mu n_{\rm A} n_{\rm B}l_{\rm B}S_{\rm B} $ (答)
コメント
[…] 過去15年で出た「ソレノイドコイル」の相互インダクタンスを求める問題2N… PHYさん […]